Systematic Cys mutagenesis of FlgI, the flagellar P-ring component of Escherichia coli
نویسندگان
چکیده
The bacterial flagellar motor is embedded in the cytoplasmic membrane, and penetrates the peptidoglycan layer and the outer membrane. A ring structure of the basal body called the P ring, which is located in the peptidoglycan layer, is thought to be required for smooth rotation and to function as a bushing. In this work, we characterized 32 cysteine-substituted Escherichia coli P-ring protein FlgI variants which were designed to substitute every 10th residue in the 346 aa mature form of FlgI. Immunoblot analysis against FlgI protein revealed that the cellular amounts of five FlgI variants were significantly decreased. Swarm assays showed that almost all of the variants had nearly wild-type function, but five variants significantly reduced the motility of the cells, and one of them in particular, FlgI G21C, completely disrupted FlgI function. The five residues that impaired motility of the cells were localized in the N terminus of FlgI. To demonstrate which residue(s) of FlgI is exposed to solvent on the surface of the protein, we examined cysteine modification by using the thiol-specific reagent methoxypolyethylene glycol 5000 maleimide, and classified the FlgI Cys variants into three groups: well-, moderately and less-labelled. Interestingly, the well- and moderately labelled residues of FlgI never overlapped with the residues known to be important for protein amount or motility. From these results and multiple alignments of amino acid sequences of various FlgI proteins, the highly conserved region in the N terminus, residues 1-120, of FlgI is speculated to play important roles in the stabilization of FlgI structure and the formation of the P ring by interacting with FlgI molecules and/or other flagellar components.
منابع مشابه
The Salmonella FlgA protein, a putativeve periplasmic chaperone essential for flagellar P ring formation.
P ring is a periplasmic substructure of the flagellar basal body and is believed to connect with the peptidoglycan layer in Salmonella. Two flagellar genes, flgA and flgI, are known to be indispensable for P ring formation. The flgI gene encodes the component protein of the P ring. However, the role of the flgA gene product in P ring assembly remained unknown. Here, evidence is presented that F...
متن کاملMolecular genetics of the flgI region and its role in flagellum biosynthesis in Caulobacter crescentus.
The differentiating bacterium Caulobacter crescentus has been studied extensively to understand how a relatively simple life form can govern the timing of expression of genes needed for the production of stage-specific structures. In this study, a clone containing the 5.3-kb flaP region was shown to contain the flgI, cheL, and flbY genes arranged in an operon with transcription proceeding from ...
متن کاملStructural flexibility of the periplasmic protein, FlgA, regulates flagellar P-ring assembly in Salmonella enterica
A periplasmic flagellar chaperone protein, FlgA, is required for P-ring assembly in bacterial flagella of taxa such as Salmonella enterica or Escherichia coli. The mechanism of chaperone-mediated P-ring formation is poorly understood. Here we present the open and closed crystal structures of FlgA from Salmonella enterica serovar Typhimurium, grown under different crystallization conditions. An ...
متن کاملIdentification and Validation of Novel Chromosomal Integration and Expression Loci in Escherichia coli Flagellar Region 1
Escherichia coli is used as a chassis for a number of Synthetic Biology applications. The lack of suitable chromosomal integration and expression loci is among the main hurdles of the E. coli engineering efforts. We identified and validated chromosomal integration and expression target sites within E. coli K12 MG1655 flagellar region 1. We analyzed five open reading frames of the flagellar regi...
متن کاملIntact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion.
The bacterial flagellar motor is a remarkable nanomachine that provides motility through flagellar rotation. Prior structural studies have revealed the stunning complexity of the purified rotor and C-ring assemblies from flagellar motors. In this study, we used high-throughput cryo-electron tomography and image analysis of intact Borrelia burgdorferi to produce a three-dimensional (3-D) model o...
متن کامل